INTRODUCTION

The Nevada CTE Curriculum Frameworks are a resource for Nevada’s public and charter schools to design, implement, and assess their CTE programs and curriculum. The content standards identified in this document are listed as a model for the development of local district programs and curriculum. They represent rigorous and relevant expectations for student performance, knowledge, and skill attainment which have been validated by industry representatives.

The intent of this document is to provide a resource to districts as they develop and implement CTE programs and curricula.

This program ensures the following thresholds are met:

- The CTE course and course sequence teaches the knowledge and skills required by industry through applied learning methodology and, where appropriate, work-based learning experiences that prepare students for careers in high-wage, high-skill and/or high-demand fields. Regional and state economic development priorities shall play an important role in determining program approval. Some courses also provide instruction focused on personal development.
- The CTE course and course sequence includes leadership and employability skills as an integral part of the curriculum.
- The CTE course and course sequence are part of a rigorous program of study and include sufficient technical challenge to meet state and/or industry-standards.

The CTE program components include the following items:

- Program of Study
- State Skill Standards
- Employability Skills for Career Readiness Standards
- Career Technical Student Organizations (CTSO)
- Curriculum Framework
- CTE Assessments:
 - Workplace Readiness Skills Assessment
 - End-of-Program Technical Assessment
- Certificate of Skill Attainment
- CTE Endorsement on a High School Diploma
- CTE College Credit
NEVADA DEPARTMENT OF EDUCATION
CURRICULUM FRAMEWORK FOR
MECHANICAL ENGINEERING

PROGRAM TITLE: MECHANICAL ENGINEERING

STATE SKILL STANDARDS: MECHANICAL ENGINEERING

STANDARDS REFERENCE CODE: MEENG

CAREER CLUSTER: SCIENCE, TECHNOLOGY, ENGINEERING & MATHEMATICS

CAREER PATHWAY: ENGINEERING & TECHNOLOGY

PROGRAM LENGTH: 3 LEVELS (L1, L2, L3C)

PROGRAM ASSESSMENTS: MECHANICAL ENGINEERING WORKPLACE READINESS SKILLS

CTSO: SKILLSUSA

GRADE LEVEL: 9-12

SURVIVAL MECHANICAL ENGINEERING

PROGRAM PURPOSE

The purpose of this program is to prepare students for postsecondary education and employment in the Mechanical Engineering industry.

The program includes the following state standards:

- Nevada CTE Skill Standards: Mechanical Engineering
- Employability Skills for Career Readiness
- Nevada Academic Content Standards (alignment shown in the Nevada CTE Skill Standards):
 - Science (based on the Next Generation Science Standards)
 - English Language Arts (based on the Common Core State Standards)
 - Mathematics (based on the Common Core State Standards)
- Common Career Technical Core (alignment shown in the Nevada CTE Skill Standards)

CAREER CLUSTERS

The National Career Clusters™ Framework provides a vital structure for organizing and delivering quality CTE programs through learning and comprehensive programs of study (POS). In total, there are 16 Career Clusters in the National Career Clusters™ Framework, representing more than 79 Career Pathways to help students navigate their way to greater success in college and career. As an organizing tool for curriculum design and instruction, Career Clusters™ provide the essential knowledge and skills for the 16 Career Clusters™ and their Career Pathways.*

PROGRAM OF STUDY
The program of study illustrates the sequence of academic and career and technical education coursework that is necessary for the student to successfully transition into postsecondary educational opportunities and employment in their chosen career path. (NAC 389.803)

PROGRAM STRUCTURE
The core course sequencing provided in the following table serves as a guide to schools for their programs of study. Each course is listed in the order in which it should be taught and has a designated level. Complete program sequences are essential for the successful delivery of all state standards in each program area.

<table>
<thead>
<tr>
<th>MECHANICAL ENGINEERING</th>
<th>COURSE NAME</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PLTW-Introduction to Engineering Design</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>PLTW-Principles of Engineering</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>PLTW-Computer Integrated Manufacturing</td>
<td>L3C</td>
</tr>
<tr>
<td></td>
<td>PLTW-Engineering Design and Development*</td>
<td>AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Complementary Courses

STATE SKILL STANDARDS
The state skill standards are designed to clearly state what the student should know and be able to do upon completion of an advanced high school career and technical education (CTE) program. The standards are designed for the student to complete all standards through their completion of a program of study. The standards are designed to prepare the student for the end-of-program technical assessment directly aligned to the standards. (Paragraph (a) of Subsection 1 of NAC 389.800)

EMPLOYABILITY SKILLS FOR CAREER READINESS STANDARDS
Employability skills, often referred to as “soft skills”, have for many years been a recognizable component of the standards and curriculum in career and technical education programs. The twenty-one standards are organized into three areas: (1) Personal Qualities and People Skills; (2) Professional Knowledge and Skills; and (3) Technology Knowledge and Skills. The standards are designed to ensure students graduate high school properly prepared with skills employers prioritize as the most important. Instruction on all twenty-one standards must be part of each course of the CTE program. (Paragraph (d) of Subsection 1 of NAC 389.800)

CURRICULUM FRAMEWORK
The Nevada CTE Curriculum Frameworks are organized utilizing the recommended course sequencing listed in the Program of Study and the CTE Course Catalog. The framework identifies the recommended content standards, performance standards, and performance indicators that should be taught in each course.

CAREER AND TECHNICAL STUDENT ORGANIZATIONS (CTSOs)
To further the development of leadership and technical skills, students must have opportunities to participate in one or more of the Career and Technical Student Organizations (CTSOs). CTSOs develop character, citizenship, and the technical, leadership and teamwork skills essential for the workforce and their further education. Their activities are considered a part of the instructional day when they are directly related to the competencies and objectives in the course. (Paragraph (a) of Subsection 3 of NAC 389.800)
WORKPLACE READINESS SKILLS ASSESSMENT

The Workplace Readiness Skills Assessment has been developed to align with the Nevada CTE Employability Skills for Career Readiness Standards. This assessment provides a measurement of student employability skills attainment. Students who complete a program will be assessed on their skill attainment during the completion level course. Completion level courses are identified by the letter “C”. (e.g., Level = L3C) (Paragraph (d) of Subsection 1 of NAC 389.800)

END-OF-PROGRAM TECHNICAL ASSESSMENT

An end-of-program technical assessment has been developed to align with the Nevada CTE Skill Standards for this program. This assessment provides a measurement of student technical skill attainment. Students who complete a program will be assessed on their skill attainment during the completion level course. Completion level courses are identified by the letter “C”. (e.g., Level = L3C) (Paragraph (e) of Subsection 1 of NAC 389.800)

CERTIFICATE OF SKILL ATTAINMENT

Each student who completes a course of study must be awarded a certificate which states that they have attained specific skills in the industry being studied and meets the following criteria: A student must maintain a 3.0 grade point average in their approved course of study, pass the Workplace Readiness Skills Assessment, and pass the end-of-program technical assessment. (Subsection 4 of NAC 389.800)

CTE ENDORSEMENT ON A HIGH SCHOOL DIPLOMA

A student qualifies for a CTE endorsement on their high school diploma after successfully completing the following criteria: 1) successful completion of a CTE course of study in a program area, 2) successful completion of academic requirements governing receipt of a standard diploma, and 3) meet all requirements for the issuance of the Certificate of Skill Attainment. (NAC 389.815)

CTE COLLEGE CREDIT

CTE College Credit is awarded to students based on articulation agreements established by each college for the CTE program, where the colleges will determine the credit value of a full high school CTE program based on course alignment. An articulation agreement will be established for each CTE program designating the number of articulated credits each college will award to students who complete the program.

CTE College Credit is awarded to students who: (1) complete the CTE course sequence with a grade-point average of 3.0 or higher; (2) pass the state end-of-program technical assessment for the program; and (3) pass the Workplace Readiness Assessment for employability skills.

Pre-existing articulation agreements will be recognized until new agreements are established according to current state policy and the criteria shown above.

Please refer to the local high school’s course catalog or contact the local high school counselor for more information. (Paragraph (b) of Subsection 3 of NAC 389.800)

ACADEMIC CREDIT FOR CTE COURSEWORK

Career and technical education courses meet the credit requirements for high school graduation (1 unit of arts and humanities or career and technical education). Some career and technical education courses meet academic credit for high school graduation. Please refer to the local high school’s course catalog or contact the local high school counselor for more information. (NAC 389.672)
CORE COURSE:
RECOMMENDED STUDENT PERFORMANCE STANDARDS

<table>
<thead>
<tr>
<th>COURSE TITLE:</th>
<th>PLTW-Introduction to Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBR. NAME:</td>
<td>PLTW ENG DESG</td>
</tr>
<tr>
<td>CREDITS:</td>
<td>1</td>
</tr>
<tr>
<td>LEVEL:</td>
<td>L1</td>
</tr>
<tr>
<td>CIP CODE:</td>
<td>14.0101</td>
</tr>
<tr>
<td>PREREQUISITE:</td>
<td>None</td>
</tr>
<tr>
<td>CTSO:</td>
<td>SkillsUSA</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION
Schools must be affiliated with the Project Lead The Way™ program to offer this course

This course is the entry-level course of the Project Lead the Way™ Pathway to Engineering curriculum. The major focus of IED is the design process and its application. Through hands-on projects, students apply engineering standards and document their work. Students use industry standard 3D modeling software to help them design solutions to solve proposed problems, document their work using an engineer’s notebook, and communicate solutions to peers and members of the professional community.

TECHNICAL STANDARDS

CONTENT STANDARD 1.0 : IDENTIFY LAB ORGANIZATION AND SAFETY PROCEDURES
Performance Standard 1.1 : Demonstrate General Lab Safety Rules and Procedures
 Performance Indicators : 1.1.1-1.1.19
Performance Standard 1.2 : Identify and Utilize Hand Tools
 Performance Indicators : 1.2.1-1.2.5
Performance Standard 1.3 : Identify and Utilize Power Tools and Equipment
 Performance Indicators : 1.3.1-1.3.5

CONTENT STANDARD 2.0 : ASSESS THE IMPACT OF ENGINEERING ON SOCIETY
Performance Standard 2.1 : Describe History of Engineering
 Performance Indicators : 2.1.1-2.1.4
Performance Standard 2.2 : Investigate Related Careers in Engineering
 Performance Indicators : 2.2.1-2.2.4
Performance Standard 2.3 : Analyze Ethics in Engineering
 Performance Indicators : 2.3.1-2.3.4

CONTENT STANDARD 3.0 : ANALYZE THE ENGINEERING DESIGN PROCESS
Performance Standard 3.1 : Interpret the Engineering Design Process
 Performance Indicators : 3.1.1-3.1.5

CONTENT STANDARD 4.0 : CONSTRUCT ENGINEERING DOCUMENTATION
Performance Standard 4.1 : Demonstrate Freehand Technical Sketching Techniques
 Performance Indicators : 4.1.1-4.1.6
Performance Standard 4.2 : Demonstrate Measuring and Scaling Techniques
 Performance Indicators : 4.2.1-4.2.6

…. continue on next page
Performance Standard 4.3 : Utilize Engineering Documentation Procedures
 Performance Indicators: 4.3.1-4.3.4

Performance Standard 4.4 : Produce Technical Drawings
 Performance Indicators: 4.4.1-4.4.8

Performance Standard 4.5 : Demonstrate Modeling Techniques
 Performance Indicators: 4.5.1-4.5.4

EMPLOYABILITY SKILLS FOR CAREER READINESS STANDARDS

CONTENT STANDARD 1.0 : DEMONSTRATE EMPLOYABILITY SKILLS FOR CAREER READINESS

Performance Standard 1.1 : Demonstrate Personal Qualities and People Skills
 Performance Indicators: 1.1.1-1.1.7

Performance Standard 1.2 : Demonstrate Professional Knowledge and Skills
 Performance Indicators: 1.2.1-1.2.10

Performance Standard 1.3 : Demonstrate Technology Knowledge and Skills
 Performance Indicators: 1.3.1-1.3.4

ALIGNMENT TO THE NEVADA ACADEMIC CONTENT STANDARDS*

English Language Arts: Reading Standards for Literacy in Science and Technical Subjects
 Writing Standards for Literacy in Science and Technical Subjects
 Speaking and Listening

Mathematics: Mathematical Practices

* Refer to the Mechanical Engineering Standards for alignment by performance indicator
Course Title: PLTW-Principles of Engineering

ABBR. NAME: PLTW PRIN ENG

Credits: 1

Level: L2

CIP Code: 14.0101

Prerequisite: PLTW-Introduction to Engineering Design

CTSO: SkillsUSA

Course Description

Schools must be affiliated with the Project Lead The Way™ program to offer this course

This course is a continuation of the Project Lead the Way™ Pathway to Engineering curriculum. This survey course exposes students to major concepts they’ll encounter in a post-secondary engineering course of study. Topics include mechanisms, energy, statics, materials, and kinematics. They develop problem-solving skills and apply their knowledge of research and design to create solutions to various challenges, document their work and communicate solutions.

Technical Standards

Content Standard 5.0: Investigate Material Properties

- **Performance Standard 5.1:** Identify Material Properties and Science
 - **Performance Indicators:** 5.1.1-5.1.5
- **Performance Standard 5.2:** Analyze the Strengths of Materials
 - **Performance Indicators:** 5.2.1-5.2.12

Content Standard 6.0: Apply Fundamental Power Systems and Energy Principles

- **Performance Standard 6.1:** Investigate Power Systems and Energy Forms
 - **Performance Indicators:** 6.1.1-6.1.13
- **Performance Standard 6.2:** Identify and Utilize Basic Mechanical Systems
 - **Performance Indicators:** 6.2.1-6.2.6
- **Performance Standard 6.3:** Identify and Utilize Energy Sources and Applications
 - **Performance Indicators:** 6.3.1-6.3.12
- **Performance Standard 6.4:** Identify and Utilize Machine Control Systems
 - **Performance Indicators:** 6.4.1-6.4.6
- **Performance Standard 6.5:** Identify and Utilize Basic Fluid Systems
 - **Performance Indicators:** 6.5.1-6.5.9
- **Performance Standard 6.6:** Identify Thermodynamics
 - **Performance Indicators:** 6.6.1-6.6.5

Content Standard 7.0: Apply Statistics and Kinematic Principles

- **Performance Standard 7.1:** Utilize Statistics
 - **Performance Indicators:** 7.1.1-7.1.9
- **Performance Standard 7.2:** Utilize Kinematic Principles
 - **Performance Indicators:** 7.2.1-7.2.6
EMPLOYABILITY SKILLS FOR CAREER READINESS STANDARDS

CONTENT STANDARD 1.0: DEMONSTRATE EMPLOYABILITY SKILLS FOR CAREER READINESS

Performance Standard 1.1: Demonstrate Personal Qualities and People Skills
 Performance Indicators: 1.1.1-1.1.7

Performance Standard 1.2: Demonstrate Professional Knowledge and Skills
 Performance Indicators: 1.2.1-1.2.10

Performance Standard 1.3: Demonstrate Technology Knowledge and Skills
 Performance Indicators: 1.3.1-1.3.4

ALIGNMENT TO THE NEVADA ACADEMIC CONTENT STANDARDS*

English Language Arts: Reading Standards for Literacy in Science and Technical Subjects
 Writing Standards for Literacy in Science and Technical Subjects
 Speaking and Listening

Mathematics: Mathematical Practices
 Number & Quantity – Vector and Matrix Quantities
 Algebra – Reasoning with Equations and Inequalities
 Algebra – Arithmetic with Polynomials and Rational Expressions
 Statistics and Probability – Interpreting Categorical and Quantitative Data

* Refer to the Mechanical Engineering Standards for alignment by performance indicator
Course Title: PLTW-Computer Integrated Manufacturing

Abbr. Name: PLTW COMP INT MFG

Credits: 1

Level: L3C

CIP Code: 14.1901

Prerequisite: PLTW-Principles of Engineering

Program Assessments: Mechanical Engineering Workplace Readiness Skills

CTSO: SkillsUSA

Course Description

Schools must be affiliated with the Project Lead The Way™ program to offer this course

This course is a continuation of the Project Lead the Way™ Pathway to Engineering curriculum. Students answer the questions: How are things made? What processes go into creating products? Is the process for making a water bottle the same as it is for a musical instrument? How do assembly lines work? How has automation changed the face of manufacturing? While students discover the answers to these questions, they’re learning about the history of manufacturing, robotics and automation, manufacturing processes, computer modeling, manufacturing equipment, and flexible manufacturing systems.

Technical Standards

Content Standard 8.0 : Analyze Manufacturing Systems and Processes

- Performance Standard 8.1 : Analyze Manufacturing Systems
 - Performance Indicators : 8.1.1-8.1.6

- Performance Standard 8.2 : Identify Manufacturing Processes
 - Performance Indicators : 8.2.1-8.2.6

- Performance Standard 8.3 : Utilize Design for Manufacturing Techniques
 - Performance Indicators : 8.3.1-8.3.6

- Performance Standard 8.4 : Utilize Product Development Processes
 - Performance Indicators : 8.4.1-8.4.9

Content Standard 9.0 : Apply Fundamental Automating Manufacturing Systems

- Performance Standard 9.1 : Identify Automating Manufacturing Systems
 - Performance Indicators : 9.1.1-9.1.5

- Performance Standard 9.2 : Utilize Automation Techniques
 - Performance Indicators : 9.2.1-9.2.15

- Performance Standard 9.3 : Apply Manufacturing Elements and Applications
 - Performance Indicators : 9.3.1-9.3.6
EMPLOYABILITY SKILLS FOR CAREER READINESS STANDARDS

CONTENT STANDARD 1.0 : DEMONSTRATE EMPLOYABILITY SKILLS FOR CAREER READINESS

Performance Standard 1.1 : Demonstrate Personal Qualities and People Skills

Performance Indicators : 1.1.1-1.1.7

Performance Standard 1.2 : Demonstrate Professional Knowledge and Skills

Performance Indicators : 1.2.1-1.2.10

Performance Standard 1.3 : Demonstrate Technology Knowledge and Skills

Performance Indicators : 1.3.1-1.3.4

ALIGNMENT TO THE NEVADA ACADEMIC CONTENT STANDARDS*

English Language Arts: Reading Standards for Literacy in Science and Technical Subjects
Writing Standards for Literacy in Science and Technical Subjects
Speaking and Listening

Mathematics: Mathematical Practices

* Refer to the Mechanical Engineering Standards for alignment by performance indicator
COMPLEMENTARY COURSE(S):

Programs that utilize the complementary courses can include the following courses. The Advanced Studies course allows for additional study through investigation and in-depth research.

<table>
<thead>
<tr>
<th>COURSE TITLE:</th>
<th>PLTW-Engineering Design and Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBR. NAME:</td>
<td>PLTW ENG DESG DEV</td>
</tr>
<tr>
<td>CREDITS:</td>
<td>1</td>
</tr>
<tr>
<td>LEVEL:</td>
<td>AS</td>
</tr>
<tr>
<td>CIP CODE:</td>
<td>14.0101</td>
</tr>
<tr>
<td>PREREQUISITE:</td>
<td>PLTW-Computer Integrated Manufacturing</td>
</tr>
<tr>
<td>CTSO:</td>
<td>SkillsUSA</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

Schools must be affiliated with the Project Lead The Way™ program to offer this course

This course is the capstone course of the Project Lead the Way™ Pathway to Engineering curriculum. In this capstone course, students work in teams to design and develop an original solution to a valid open-ended technical problem by applying the engineering design process. Students perform research to choose, validate, and justify a technical problem. After carefully defining the problem, teams design, build, and test their solutions while working closely with industry professionals who provide mentoring opportunities. Finally, student teams present and defend their original solution to an outside panel. Upon successful completion of this program, students will be prepared for entry into an Engineering program at the college level.

TECHNICAL STANDARDS

Students have achieved all program content standards and will pursue advanced study through investigation and in-depth research.

EMPLOYABILITY SKILLS FOR CAREER READINESS STANDARDS

Students have achieved all program content standards and will pursue advanced study through investigation and in-depth research.

SAMPLE TOPICS

- Participate in individual/team competitions
- Participation in an internship or job shadow opportunities
- Explore college and career opportunities
- Complete a capstone project